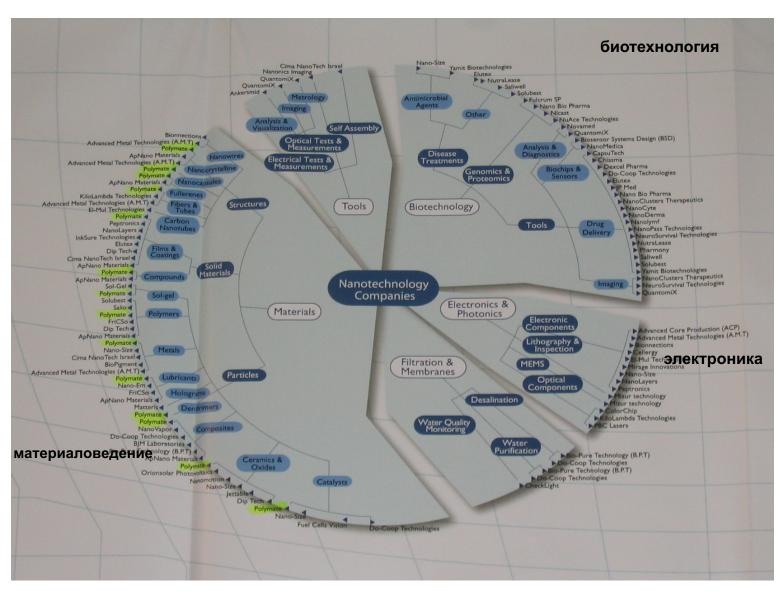
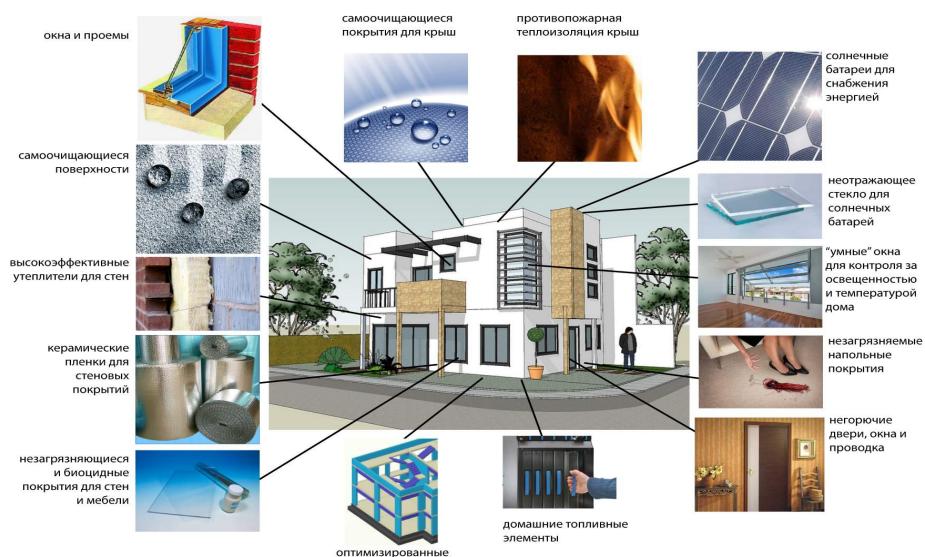
Наномодификация свойств бетона минеральными добавками с использованием кавитационного измельчения


Гусев Борис Владимирович,

Российская инженерная академия

Москва, 2017 го∂

Области и объемы применения нанотехнологий в различных областях



Развитие нанотехнологий

(литература)

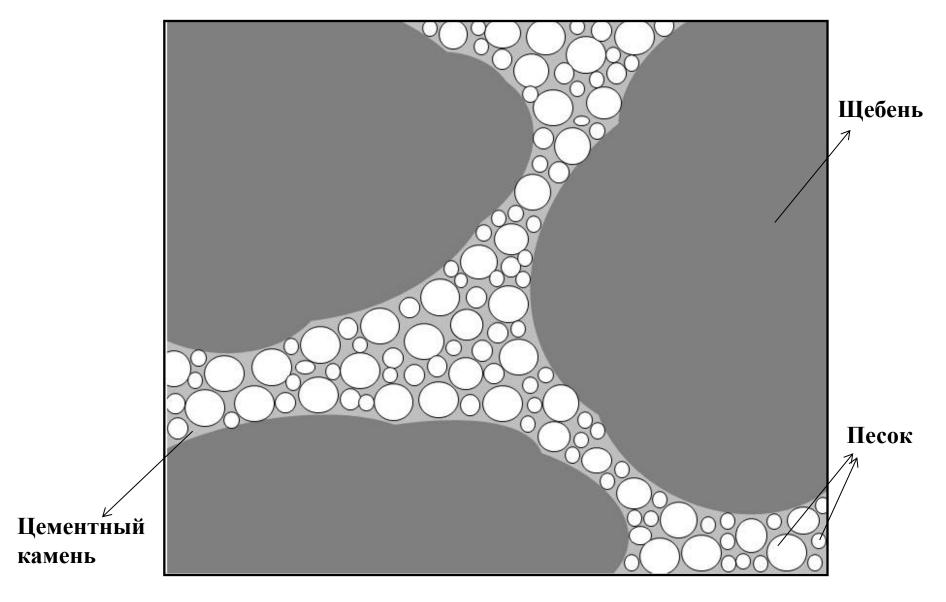
- Актуальные проблемы нанотехнологии и наноматериалов. Доклады ученых РАН на Российско-китайском симпозиуме. Пекин, 2006, 144 с.
- Нанотехнологиию Азбука для всех. Главный редактор **Ю.Д.Третьяков**. М., ФНМ МНУ, 2006, 151 с.
- **Мелихов И.В**. Физико-химическая эволюция твердого вещества (нанотехнологии). М., Бином. Лаборатория знаний, 2006, 309 с.
- Шабанова Н.А., Попов В.В., **Саркисов П.**Д. Химия и технологии нанодисперсных оксидов. М., Академкнига, 2007. 309 с.
- Белая книга по нанотехнологиям. М., ЛКИ, 2008. 344 с.
- Богатство наномира. Фоторепортаж из глубин вещества под редакцией **Ю.Д.Третьякова**. М., Бином. Лаборатория знаний, 2009, 171 с.
- Основы нанотехнологии: учебник (**Кузнецов Н.Т., Новотворцев В.М., Жабрев В.А.**, Маргомин В.И.) М., Бином. Лаборатория знаний, 2014, 397 с.
- Гусев Б.В., Фаликман В.Р., Лайстнер Ш. и др. Основное технологическое исследование «Развитие российского рынка нанотехнологических продуктов в строительной отрасли до 2020 года». Нанотехнологии в строительстве, 2013. Том5, №1, С. 6-17; том 5, №2, С 6,-20; том 5, №3, С 6-19.

Примеры использования наноматериалов в строительстве

бетонные конструкции

Исследования в области нанотехнологий в строительстве

	Производство	Строительство	Эксплуатация
Цели	Решения на основе нанотехнологий и наноматериалов для снижения расходов при производстве строительных материалов	Решения на основе нанотехнологий и наноматериалов для снижения расходов на строительство по сравнению с традиционными технологиями	Материалы, снижающие расходы на эксплуатацию зданий и объектов инфраструктуры, а также достигающие характеристик, которых невозможно добиться традиционными технологиями
Цемент и бетон	 Сокращение потребляемой энергии Сокращение выбросов СО₂ Увеличение объемов производства 	Механические свойстваУплотнение	СамоочисткаСамозалечиваниеВысокая функциональность
Сталь	Повышение прочностиУвеличение нормы прибыльности	■ Механические свойства	Антикоррозионные свойстваДолговечность
Стекло, керамика	 Повышение эксплуатационных характеристик Упрощение технологии производства Уменьшение количества повреждений 	 Термоизоляция Уменьшение количества царапин Повышение механических характеристик 	 Отражение UV Термическая и звукоизоляция Самоочищение Поглощение инфракрасных лучей Долговечность
Краски, покрытия	 Улучшение реологических характеристик Повышение стабильности Повышение кроющей способности 	Механические свойстваУменьшение трудозатратСнижение стоимости	 Противобактериальные, самоочищающиеся , свойства «анти-граффити» Долговечность Огнеупорные свойства
Битум, полимеры	 Сокращение потребляемой энергии Сокращение выбросов СО₂ Рост производительности 	Механические свойстваУплотнение	■ Долговечность, механические характеристики ■ Огнеупорные свойства
Дерево	 Придание новых объемных свойства древесине и продуктам переработки Уменьшение количества отходов 	■ Механические свойства	 Долговечность
Прочие		■ Мониторинг	■ Мониторинг


Основные сведения о бетоне и цементе

В мире производится около 5 млрд м³ бетона Необходимо производить 2-3 млрд т цемента Загрязнение атмосферы продуктами СО₂ составляет 5-7% общих выбросов

Основные задачи

- 1. Снизить нагрузку на природу (уменьшить расход цемента в 1,5-2 раза)
- 2. Увеличить прочность бетона до 70-100 МПа (в настоящее время 30-50 МПа)
- 3. Повысить долговечность в 5-7 раз (5% бетона ежегодно разрушаются от коррозии)

Макроструктура бетона

Основные требования, предъявляемые к бетонным материалам и конструкциям

- 1. Прочность: на сжатие R_{сж} R_⊳/R_{сж} хрупкость<5 на растяжение R_о
- 2. Деформативность (упругость, пластичность, ползучесть и др.)
- 3. Сопротивление динамическим нагрузкам
- 4. Стойкость к действию высоких и низких температур
- 5. Твердость и истираемость
- 6. Стойкость к действию химически активных сред
- 7. Стойкость к действию климатических факторов (температура, среда, солнечное излучение)
- 8. Стойкость к радиоактивным и другим излучениям
- 9. Способность к поверхностному упрочнению и соединению с другими материалами.
- 10.Способность к созданию композитов
- 11. Другие свойства (проницаемость, теплоемкость, теплопроводность).
- 12. Технологичность изготовления
- 13. Ремонтопригодность
- 14. Частичная или полная утилизация материалов

Прочность и долговечность бетона

Прочность

```
R_6 прочность бетона
```

прочность матрицы

 $R_{\rm B}$ прочность включения

 R_{cu} прочность сцепления цементного камня с заполнителями

прочность бетона на растяжение

 $E_{\rm B}$, $E_{\rm M}$ модули упругости включения и матрицы

Долговечность Д6 долговечность бетона

параметры агрессивного воздействия

 $\Pi_{\mathbf{0}}$ общая пористость бетона

ε характеристика пористости цементного камня

средний радиус капилляра

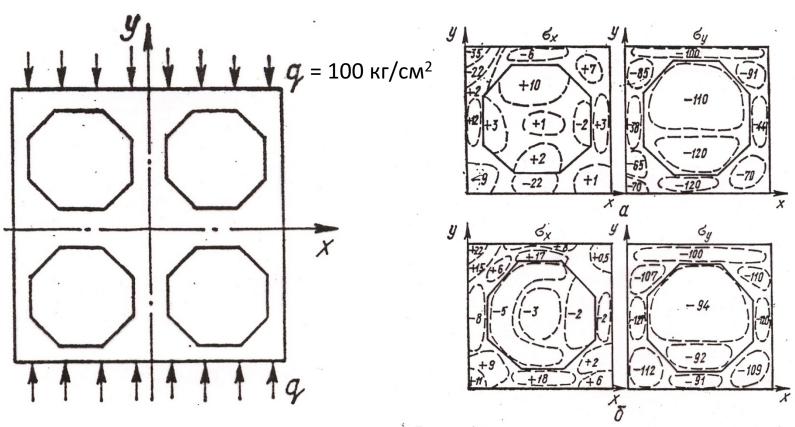
коэффициенты диффузии

Влияние основных факторов на прочность композитов, типа бетонов (теория размерностей)

Прочность бетона на сжатие — $R_6 = f$ (R_M , R_B , R_{CL} , R_p , Π_o , E_B , E_M), где: Π_o — пористость, E — модуль упругости; размерности: R [K/L^2]; E [K/L^2]; M — матрица; B — включение, CL — CL —

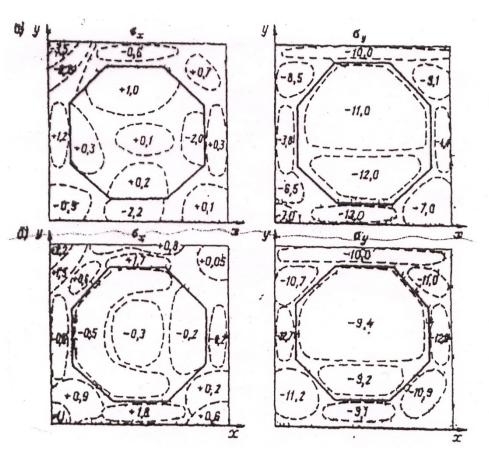
<u>Безразмерные комбинации</u> (∏ – теорема)

$$\frac{R_{\text{M}}}{R_{\text{B}}}; \frac{R_{\text{CH}}}{R_{\text{B}}}; \frac{R_{\text{pM}}}{R_{\text{M}}}; \Pi_{\text{O}}; \frac{E_{\text{M}}}{E_{\text{B}}}; \qquad R_{\text{G}} = f\left(\frac{R_{\text{M}}}{R_{\text{B}}}; \frac{R_{\text{CH}}}{R_{\text{B}}}; \frac{R_{\text{pM}}}{R_{\text{M}}}; \Pi_{\text{O}}; \frac{E_{\text{M}}}{E_{\text{B}}}\right)$$

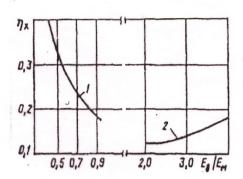

$$\frac{R_{\text{M}}}{R_{\text{B}}} = 0.2 \quad \frac{R_{\text{CH}}}{R_{\text{B}}} = 0.1 \quad \frac{R_{\text{pM}}}{R_{\text{M}}} = 0.1 \quad \Pi_{\text{O}} = 0.01 \quad \frac{E_{\text{M}}}{E_{\text{B}}} = 0.3$$

Анализ размерностей

$$R_6 = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + a_5 x_5 + a_6 x_1 x_2 + ... a_n x_i^2 + ...$$

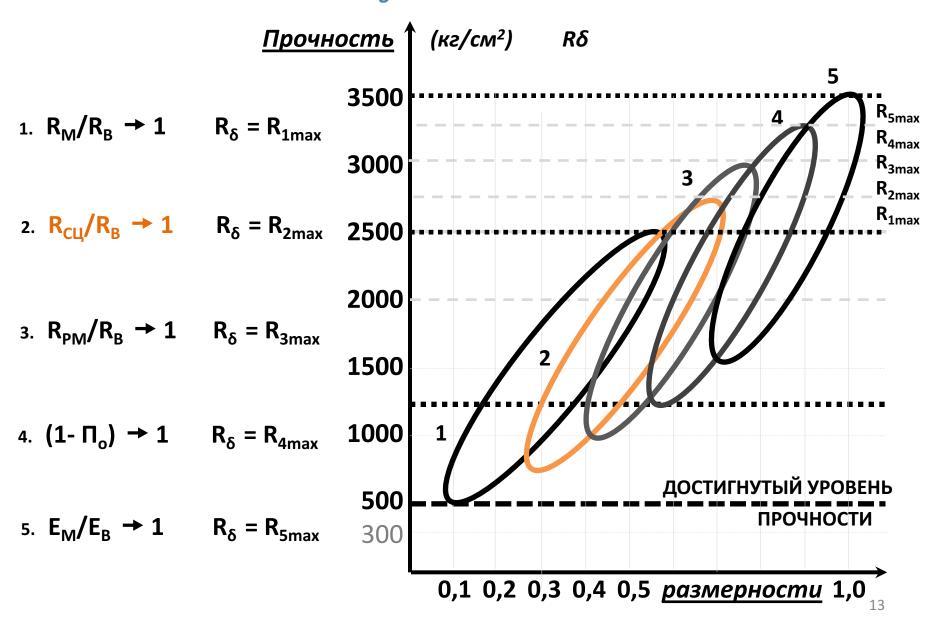

$$R_6 = a_0 + 0.2x_1 + 0.1x_2 + 0.1x_3 + 0.01x_4 + 0.3x_5 + ...$$

Расчетная модель для оценки концентрации напряжений



Напряженное состояние в бетоне (сжимающие напряжения показаны со знаком минус «—», растягивающие — плюс «+») при: $a = E_{\rm g}/E_{\rm m} = 3; \ \delta = E_{\rm g}/E_{\rm m} = 0.7$

Поля распределения горизонтальных и вертикальных напряжений от внешней нагрузки интенсивностью q=10 Мпа



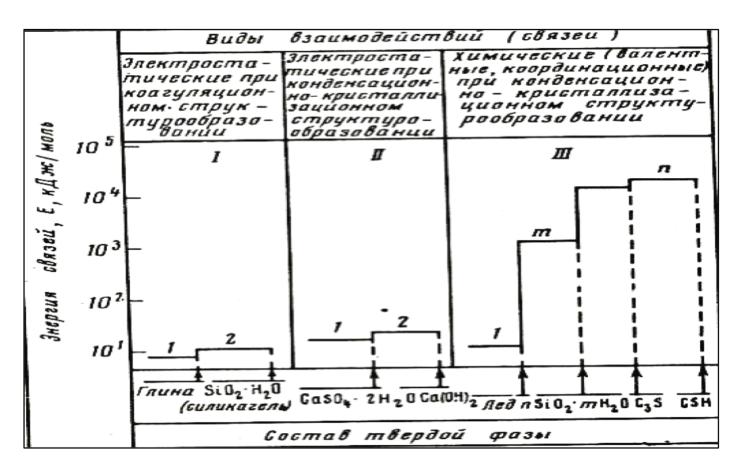
Графики зависимости коэффициентов ή_{*} концентрации максимальных растягивающих напряжений от соотношения модулей упругости

$$1 - \text{при } \underset{\text{в}}{\text{E}} / \underset{\text{м}}{\text{E}} = 0,9\text{-}0,5; \ 2 - \text{при } \underset{\text{в}}{\text{E}} / \underset{\text{м}}{\text{E}} = 2:4$$

Синергетика при создании максимальных значений прочности бетона R_δ max (математическая логика)

Достижение теоретической прочности бетона – это:

$$R_6 = f(\frac{R_M}{R_B}; \frac{R_{CH}}{R_B}; \frac{R_{pm}}{R_m}; \frac{E_M}{E_B})$$

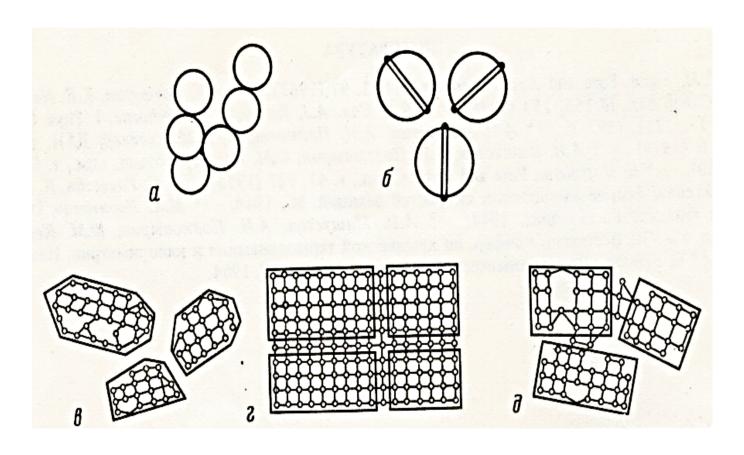

- повышение прочности цементной матрицы Rm;
- увеличение сцепления цементной матрицы с заполнителем *Rcu*;
- повышение прочности матрицы на растяжение *Rpm*;
- увеличение модуля упругости цементной матрицы Ем.

Коллоидные частицы в бетонах

(литература)

- Нехорошев А.В., Гусев Б.В., Баранов А.Т, Холпанов Л.П. Явления, механизм и энергетические уровни образования структурированных дисперсных систем. Доклады АН СССР, 1981, том 258, №1, с. 149-153.
- Бабушкин В.И., Гусев Б.В., Кондращенко Е.Г. Закономерность объемных изменений в структурирующихся коллоидных системах. Сб «Научные открытия», М. 2002, с. 27-30
- Холпанов Л.П., Гусев Б.В. Блочная коллоидно-химическая кристаллизация материалов. Москва, Научный мир, 2008, 37 с.

Энергетические уровни (I, II, III) и подуровни (1, 2,...,m,...,n) взаимодействий в коллоидных системах для дисперсных структур



Доклады АН СССР, 1981, том 258, №1, с. 149-153.

Нехорошев А.В., Гусев Б.В., Баранов А.Т, Холпанов Л.П. Явления, механизм и энергетические уровни образования структурированных дисперсных систем.

16


Схемы образования структурированных дисперсных систем из коллоидных частиц

а - сернистого мышьяка; б - природной глины; в - гипса;

г - кварца; д - трехкальциевого силиката

Формирование структуры цементных бетонов

Б.В. Гусев, В.И. Кондращенко Б.П. Маслов, А.С. Файвусович

ФОРМИРОВАНИЕ СТРУКТУРЫ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ И ИХ СВОЙСТВА

НАУЧНЫЙ МИР

Механо-химические технологии при приготовлении и уплотнении бетонных смесей

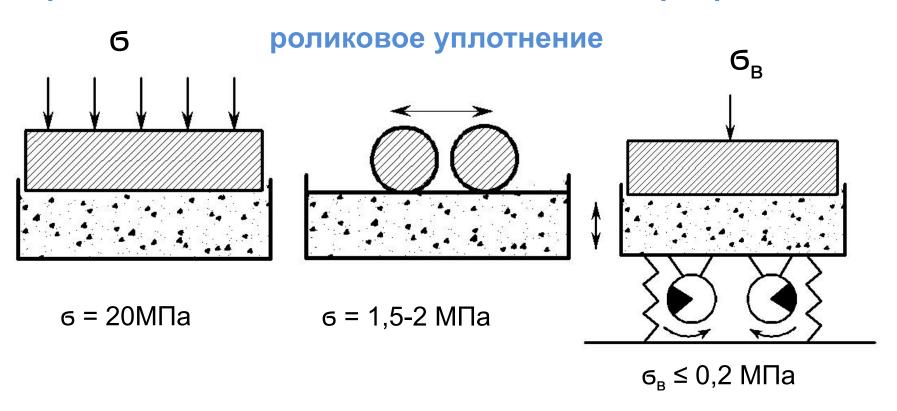
Приготовление:

перемешивание цемента, песка, щебня и воды (в том числе с химическими добавками: лигносульфонаты, миламино-формальдегидные добавки, поликарбоксилаты и другие)

Уплотнение:

Трамбование, прессование, прокат, вибрирование, литье

Вяжущие и наполнители в цементных системах (шлаки, золы, минеральные добавки)


Наполнение портландцемента (ПЦ) и шлакопортландцемента (ШПЦ) минеральными добавками

Марка бетона	Вид цемента	Марка цемента	Содержание добавки,%	Удельный расход цемента, кг/м³	Топливоемкость, %
	пц	400	-	300	87
200	ПЦ с добавками	400	18	305	72
	шпц	300	60	340	47
	пц	500	-	330	97
300	ПЦ с добавками	400	18	390	92
	шпц	400	50	395	64

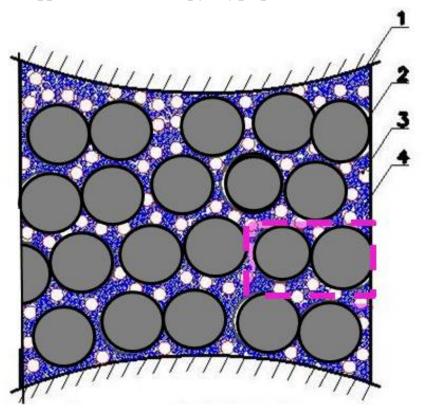
Силовые методы уплотнения

прессование

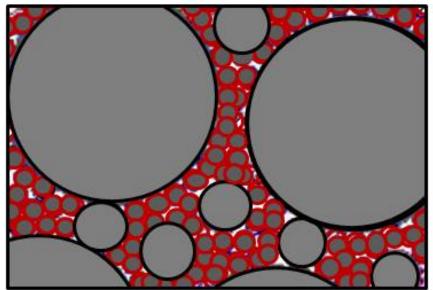
вибропрессование

Свойства мелкозернистых бетонов при различных методах формования и составах бетонной смеси

Nº	Pa	сход со	ставляющ	их	Влаж-	Объемная	Интеграль-	Предел про-	
ва	цемент, кг/м ³	песок, кг/м ³	напол- нитель, кг/м ³	вода, кг/м ³	ность смеси <i>W_{см}</i> , %	плотность минерального скелета ρ_{0ck} , %	ное водо- поглощение <i>W_{инт},</i> %	чности при сжатии <i>R_{сж},</i> МПа	
				Станда	ртная виб	брация			
1	714	1397	_	232	11	74,1	5,2	68	
2	477	1402	202	229	11	74,7	6,5	.55	
3	240	1408	406	226	11	75,4	8	35	
				Вибр	опрессов	ание			
4	762	1492	-	180	8	79,5	2,9	72,5	
5	509	1496	216	177	8	80,6	3,1	75,5	
6	255	1501	433	175	8	81,1	4,9	48	
				Роликов	вое форм	ование			
7	750	1386	· · · · · · · · · · · · · · · · · · ·	235	11	79,8	11,8	72,1	


Составы мелкозернистых бетонных смесей с наполнителями в виде золы и микрокремнозема

№ п/п		Фактический состав бетона, т (масса)*									Объемная масса, _{Уб.с} .	В/Ц	R _{сж.,}
	т _{и,}	m _{π,} 3 ΚΓ/Μ	т ₃	т _{мк}	т _{мк}	т _{с-3}	m _{c-3}	т _в			кг/м 3		МПа
1.	567	1120	332					225	40	1,00	2191	0,40	45,9
2.	498	1285	300					197	40	0,98	2250	0,39	43,7
3.	380	1458	248					156	40	0,97	2205	0,41	30,6
4.	485	1063	315	54,6	10	5,46	1	176	40	0,97	2010	0,36	56,0
5.	443	1269	298	49,5	10	5,05	1	179	40	0,97	2200	0,40	48,0
6.	315	1347	229	38,0	10	3,88	1	164	20		2040	0,52	34,0
7.	460	1135	336	115,0	20	11,50	2	196	40	0,99	2225	0,43	64,2
8.	412	1328	314	103,0	20	10,50	2	196	40	0,99	2320	0,48	58,2
9.	300	1432	244	74,8	20	7,48	2	144	40	0,94	2166	0,48	41,2
10.	408	1151	341	174,5	30	17,40	3	214	40	0,98	2274	0,52	65,3
11.	315	1164	271	135,0	30	13,50	3	147			2030	0,46	
12.	270	1487	253	116,0	30	11,60	3	158	40	0,97	2260	0,59	55,7


 $m_{\text{ц}}$ – масса цемента, $m_{\text{п}}$ – масса песка, $m_{\text{з}}$ – масса золы, $m_{\text{км}}$ – масса микрокремнезёма, $m_{\text{c-s}}$ – количество суперпластификаторов C-3, $m_{\text{в}}$ – масса воды.

НАНОСТРУКТУРИРОВАНИЕ мелкозернистых бетонов

а) фрагмент наноструктурирования

б) фрагмент наноструктуры пространства между частицами цемента

- 1 частицы песка; 2 частицы цемента;
- 3 тонкомолотые частицы наполнителя;
- 4 наночастицы

Измельчение и активация цементных систем

Классификация дисперсных материалов по размерам частиц

Цементные порошки

(10-80) MKM; $(10-80) \cdot 10^4$ HM

Тонкодисперсные порошки (наполнители)

 $10^4 - 10^3$ HM

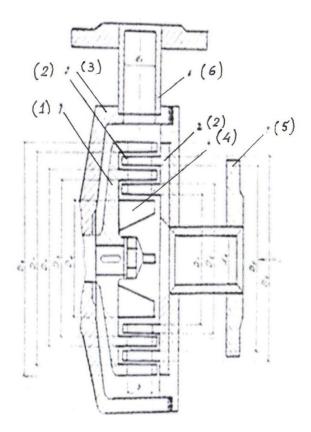
Ультрадисперсные наполнители

 $10^3 - 10^2 \text{ HM}$

Наноматериалы

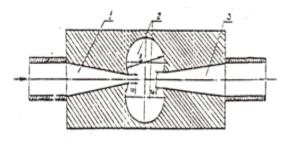
менее 10^2 нм

Формирование структуры и наноструктуры бетонов

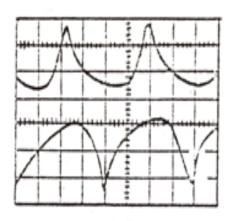


Нановяжущие // Патент РФ №2412919. – 2009г.

ИЗМЕЛЬЧЕНИЕ И АКТИВАЦИЯ МАТЕРИАЛОВ


Импульсные и гидродинамические и активаторы

Импульсные (роторнопульсационные) аппараты



1 – ротор; 2 – статор; 3 – корпус; 4 – крыльчатка; 5 – фланец; 6 - штуцер

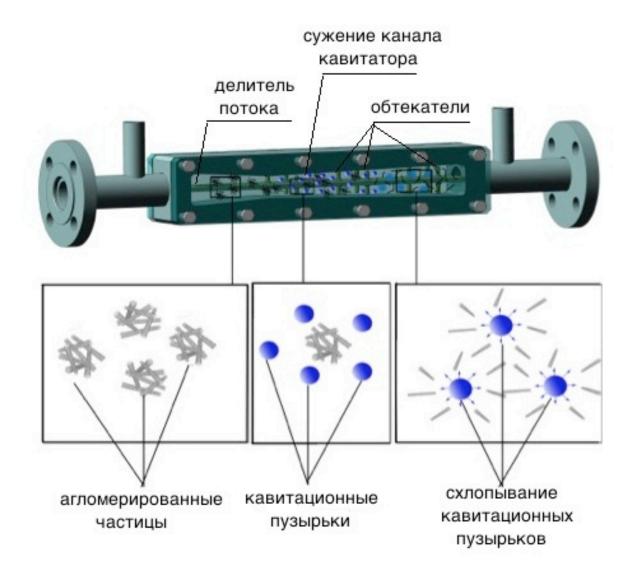
Гидродинамическая система

1 – входное сопло; 2 – резонаторные камеры; 3 – выходное сопло

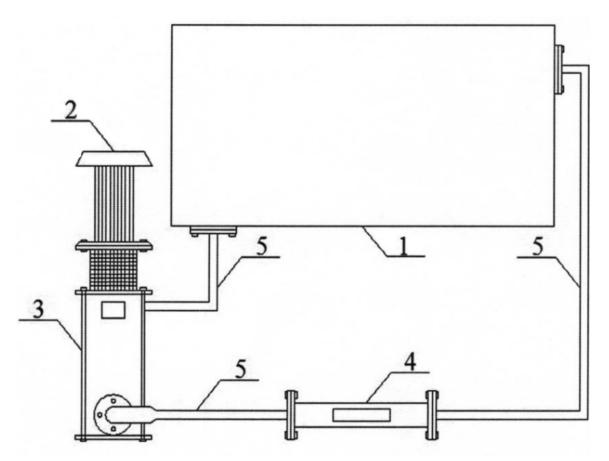
Вид импульсов давления, формируемых в среде в двух резонаторных камерах ГДИ

Измельчение и активация материалов в проточном кавитаторе

а) поле вихревых потоков



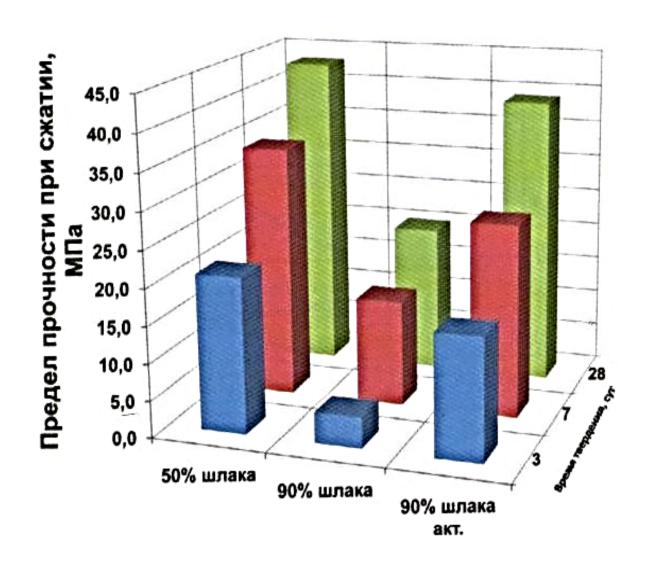
б) картина перемешивания



ИЗМЕЛЬЧЕНИЕ И АКТИВАЦИЯ МАТЕРИАЛОВ

Общий вид пассивного гидродинамического диспергатора

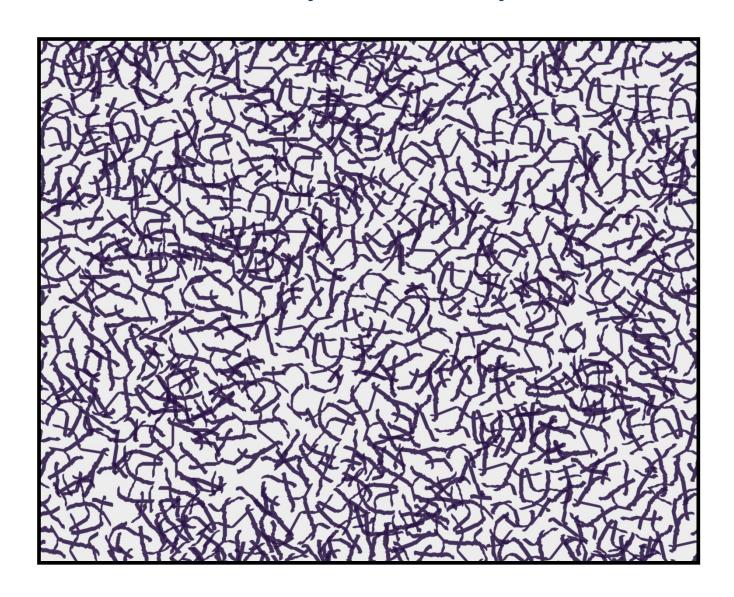
Схема гидродинамической кавитационной установки

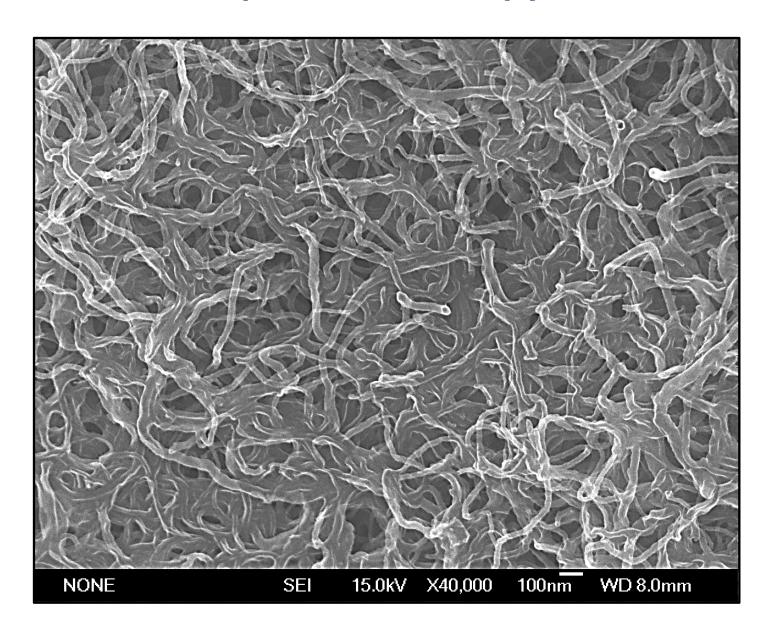


- 1-рабочая емкость для приема раствора;
- 2-электрический двигатель мощностью 3 кВт;
- 3- многоступенчатый многорядный насос;
- 4- пассивный гидродинамический диспергатор;
- 5-соединительные элементы

Изменение дисперсности частиц при активации золы в роторно-пульсационном аппарате

Время	Содержание частиц,%, размером мкм							
обработки, мин.	0 - 10	10 - 20	20 - 40	40 - 80	Более 80			
Без обработки	5,2	8,6	7	35,2	44			
3	10,5	13,3	9,1	38,1	29			
5	14,3	16,7	11,9	44,1	13			

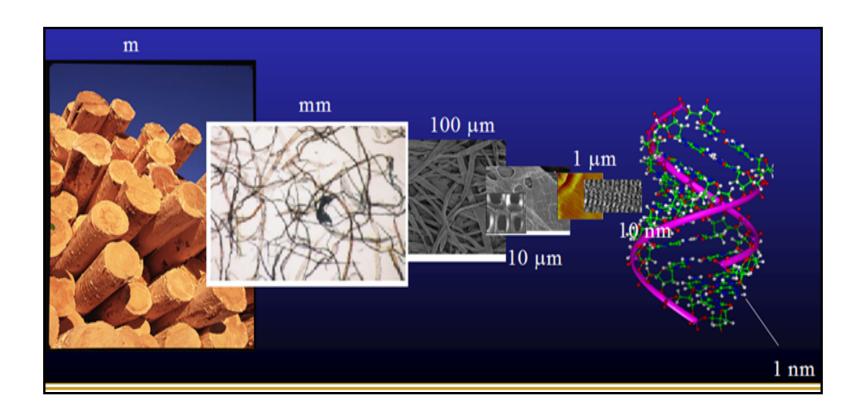

Прочность шлакопортландцементов при их активации в роторно-пульсационном аппарате


Составы наномодифицированных бетонов с добавлением суперпластификаторов

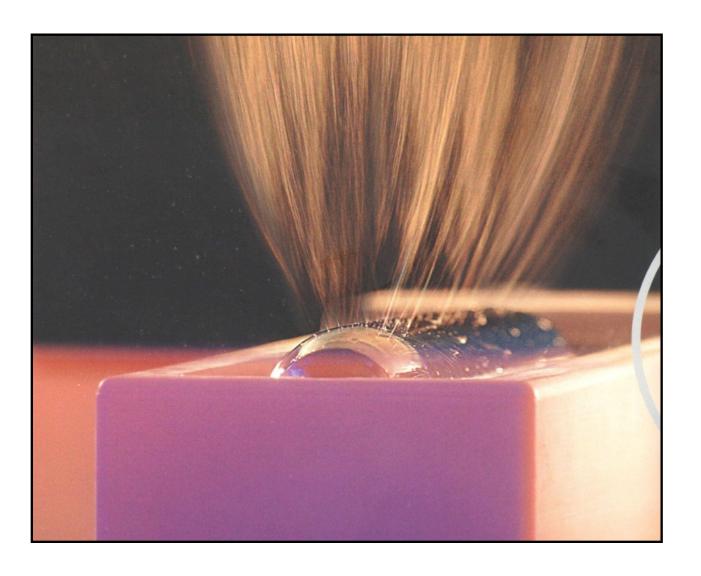
Щебень кг/м ³	Песок кг/м ³	Цемент кг/м ³	Тонкомо- лотый наполни- тель кг/м ³	Ультро- дисперс- ный наполни- тель кг/м ³	Нанодис- персный наполни- тель кг/м ³	Вода л	Водо- твердые отноше- ния В/Т	Объемная масса, кг/м ³	Прочность МПа
1000-1100	450-550	240-270	160-180	68-72	28-31	200-220	0,27-0,29	2200-2250	-
1100	550	270	110	50	20	210	0,5	2200	130 МПа
Песчаный бетон	1402	477	167	72	31	209	0,28	2210	170 МПа

Упрочнение цементной матрицы нановолокнами-- повышение прочности на растяжение

Углеродные нанотрубки


Прочностные показатели бетона модифицированного УНТ

	HT, %,	Резу.	льтаты и	спытани сжатие	ий на	Результаты испытаний на растяжение при изгибе		
№ п/п	Концентрация УНТ по массе цемента, %	$ ho_{ m cp},{ m K}\Gamma/{ m M}^3$	$R_{ m cx};$ 1 сутки, МПа	$R_{ m cx};$ 7 суток, МПа	$R_{ m cx};$ 28 cytok, M Πa	$ ho_{ m cp},{ m K}\Gamma/{ m M}^3$	7 суток, МПа	28 суток, МПа
1.	0	2231	22	47	51	2247	5,6	7
2.	0,05	2245	27	50	62	2293	7	7,7


Свойства различных нановолокон

Материал	Модуль упругости, ГПа	Прочность на разрыв, ГПа
Наноцеллюлоза (Topcell)	135	8,3
Кевлар 49	125	3,5
Углеродное волокно	150	3,5
Углеродные нанотрубки	300	20
Нержавеющая сталь	200	0,5

Целлюлозные волокна и нановолокна

Получение наноразмерных полимерных нитей

Проблемы долговечности бетонов, как пористых систем

Водопотребность цемента для образования цементного камня B/Ц = 0,15

Технологическая водопотребность для обеспечения подвижности бетонных смесей B/Ц = 03-06

Литература по коррозии

Книги и брошюры

- 1. Гусев Б.В., Зазимко В.Г., Нетеса .М.І. Бетон. Яким йому бути? Киів, 1978, 47 с.
- 2. Гусев Б.В., Деминов А.Д., Крюков Б.И., Литвин Л.М., Логвиненко Е.А Ударно-вибрационная технология уплотнения бетонных смесей. Москва, Стройиздат, 1982, 150 с.
- 3. Гусев Б.В. Техническое перевооружение предприятий стройиндустрии. Москва, Знание, 1988, 46 с.
- 4. M.Bołtryk, B.Gusev Technologia formowania prefabrykatow betonowych. Polska. Politechnika Bialostocka, 1990, 207 s.
- 5. Гусев Б.В., Файвусович А.С., Степанова В.Ф., Розенталь Н.К. Математические модели процессов коррозии бетонов. Москва, Научный мир, 1996, 102 с.
- 6. Гусев Б.В., Кондращенко В.И., Маслов Б.П., Файвусович А.С. Формирование структуры композиционных материалов и их свойства. Москва, Научный мир, 2006, 560 с., (под редакцией Гусева Б.В.).
- 7. Холпанов Л.П., Гусев Б.В. Блочная коллоидно-химическая кристаллизация. Москва, Научный мир, 2008, 37 с.
- 8. Гусев Б.В., Самуэл Иен-Лян Ин, Кузнецова Т.В. Цементы и бетоны— тенденции развития. Москва, Научный мир, 2012, 134 с.
- 9. B.Gusev Strength and durability of concrete as composite material (theory). Moscow, 2014, 42 p.
- 10. B.Gusev "Development of prefabricated reinforced concrete industry in the Soviet Union (1981-1990)" (technological platform). 2 nd Enlarged edition. Izhevsk, KIT, 2015, 143 p.
- 11. B.Gusev Advanced technologies in precast concrete manufacture. 2-nd Enlarged edition, Izhevsk, 2015, 187 p.
- 12. Гусев Б.В. Перспективные технологии при производстве сборного железобетона. Издание 2. Ижевск, 2015, 205 с.
- 13. Б.В.Гусев, Ю.Р.Кривобородов, С.В.Самченко Технология портландцемента и его разновидностей. Учебное пособие. Москва, Изд. НИУ МГСУ, 2016, 112 с.